Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Seismic resiliency includes the ability to protect the contents of mission-critical buildings from becoming damaged. The contents include telecommunication and other types of electronic equipment in mission-critical data centres. One technique to protect sensitive equipment in buildings is the use of floor isolation systems (FIS). Multi-directional shake table real-time hybrid simulation (RTHS) is utilized in this paper to validate the performance of full-scale rolling pendulum (RP) bearings, incorporating multi-scale (building– FIS–equipment) interactions. The analytical substructure for the RTHS included 3D nonlinear models of the building and isolated equipment, while the experimental substructure was comprised of the FIS. The RTHS test setup consisted of the FIS positioned on a shake table, where it is coupled to the analytical substructure and subjected to multi-directional deformations caused by the building’s floor accelerations and equipment motion from an earthquake. Parametric studies were performed to assess the influence of different building lateral load systems on the performance of the FISs. The lateral load resisting systems included buildings with steel moment resisting frame (SMRF) systems and with buckling restrained braced frame (BRBF) systems. Each building type was subjected to multi-directional ground motions of different sources and hazard levels. Details of the experimental test setup, RTHS test protocol and main preliminary results on the multi-directional testing of an RP-based FIS are described. Challenges in conducting the multi-axial RTHS, including the nonlinear kinematics transformation, adaptive compensation for the actuator-table dynamics, along with the approaches used to overcome them are presented. The acceleration and deformation response of the isolated equipment is assessed to demonstrate the effectiveness of the FIS in mitigating the effects of multi-directional seismic loading on isolated equipment in mission-critical buildings.more » « less
-
Context. Dense and cold molecular cores and filaments are surrounded by an envelope of translucent gas. Some of the low-Jemission lines of CO and HCO+isotopologues are more sensitive to the conditions either in the translucent environment or in the dense and cold one because their intensities result from a complex interplay of radiative transfer and chemical properties of these heterogeneous lines of sight (LoSs). Aims. We extend our previous single-zone modeling with a more realistic approach that introduces multiple layers to take account of possibly varying conditions along the LoS. We used the IRAM-30m data from the ORION-B large program toward the Horsehead nebula in order to demonstrate our method’s capability and effectiveness. Methods. We propose a cloud model composed of three homogeneous slabs of gas along each LoS, representing an outer envelope and a more shielded inner layer. We used the non-LTE radiative transfer code RADEX to model the line profiles from the kinetic temperature (Tkin), the volume density (nH2), kinematics, and chemical properties of the different layers. We then used a fast and robust maximum likelihood estimator to simultaneously fit the observed lines of the CO and HCO+isotopologues. To limit the variance on the estimates, we propose a simple chemical model by constraining the column densities. Results. A single-layer model cannot reproduce the spectral line asymmetries that result from a combination of different radial velocities and absorption effects among layers. A minimal heterogeneous model (three layers only) is sufficient for the Horsehead application, as it provides good fits of the seven fitted lines over a large part of the studied field of view. The decomposition of the intensity into three layers allowed us to discuss the distribution of the estimated physical or chemical properties along the LoS. About 80% of the12CO integrated intensity comes from the outer envelope, while ~55% of the integrated intensity of the (1 − 0) and (2 − 1) lines of C18O comes from the inner layer. For the lines of the13CO and the HCO+isotopologues, integrated intensities are more equally distributed over the cloud layers. The estimated column density ratioN(13CO)/N(C18O) in the envelope increases with decreasing visual extinction, and it reaches 25 in the pillar outskirts. While the inferredTkinof the envelope varies from 25 to 40 K, that of the inner layer drops to ~15 K in the western dense core. The estimatednH2in the inner layer is ~3 × 104cm−3toward the filament, and it increases by a factor of ten toward dense cores. Conclusions. Our proposed method correctly retrieves the physical and chemical properties of the Horsehead nebula. It also offers promising prospects for less supervised model fits of wider-field datasets.more » « less
-
Context.Observations of ionic, atomic, or molecular lines are performed to improve our understanding of the interstellar medium (ISM). However, the potential of a line to constrain the physical conditions of the ISM is difficult to assess quantitatively, because of the complexity of the ISM physics. The situation is even more complex when trying to assess which combinations of lines are the most useful. Therefore, observation campaigns usually try to observe as many lines as possible for as much time as possible. Aims.We have searched for a quantitative statistical criterion to evaluate the full constraining power of a (combination of) tracer(s) with respect to physical conditions. Our goal with such a criterion is twofold. First, we want to improve our understanding of the statistical relationships between ISM tracers and physical conditions. Secondly, by exploiting this criterion, we aim to propose a method that helps observers to make their observation proposals; for example, by choosing to observe the lines with the highest constraining power given limited resources and time. Methods.We propose an approach based on information theory, in particular the concepts of conditional differential entropy and mutual information. The best (combination of) tracer(s) is obtained by comparing the mutual information between a physical parameter and different sets of lines. The presented analysis is independent of the choice of the estimation algorithm (e.g., neural network orχ2minimization). We applied this method to simulations of radio molecular lines emitted by a photodissociation region similar to the Horsehead Nebula. In this simulated data, we considered the noise properties of a state-of-the-art single dish telescope such as the IRAM 30m telescope. We searched for the best lines to constrain the visual extinction,AVtot, or the ultraviolet illumination field,G0. We ran this search for different gas regimes, namely translucent gas, filamentary gas, and dense cores. Results.The most informative lines change with the physical regime (e.g., cloud extinction). However, the determination of the optimal (combination of) line(s) to constrain a physical parameter such as the visual extinction depends not only on the radiative transfer of the lines and chemistry of the associated species, but also on the achieved mean signal-to-noise ratio. The short integration time of the CO isotopologueJ= 1 − 0 lines already yields much information on the total column density for a large range of (AVtot,G0) space. The best set of lines to constrain the visual extinction does not necessarily combine the most informative individual lines. Precise constraints on the radiation field are more difficult to achieve with molecular lines. They require spectral lines emitted at the cloud surface (e.g., [CII] and [CI] lines). Conclusions.This approach allows one to better explore the knowledge provided by ISM codes, and to guide future observation campaigns.more » « less
-
Abstract Coupling qubits to a superconducting resonator provides a mechanism to enable long-distance entangling operations in a quantum computer based on spins in semiconducting materials. Here, we demonstrate a controllable spin-photon coupling based on a longitudinal interaction between a spin qubit and a resonator. We show that coupling a singlet-triplet qubit to a high-impedance superconducting resonator can produce the desired longitudinal coupling when the qubit is driven near the resonator’s frequency. We measure the energy splitting of the qubit as a function of the drive amplitude and frequency of a microwave signal applied near the resonator antinode, revealing pronounced effects close to the resonator frequency due to longitudinal coupling. By tuning the amplitude of the drive, we reach a regime with longitudinal coupling exceeding 1 MHz. This mechanism for qubit-resonator coupling represents a stepping stone towards producing high-fidelity two-qubit gates mediated by a superconducting resonator.more » « less
-
Objective: The purpose of this study was to understand the experiences of historically underrepresented graduate students, more than half of whom were enrolled in science, technology, engineering, and mathematics (STEM) disciplines, during the COVID-19 pandemic. This focus group study represents an initial stage in developing an intervention for historically underrepresented graduate students and their families. Background: Underrepresentation of graduate students of color in STEM has been attributed to a myriad of factors, including a lack of support systems. Familial support is an endorsed reason for persisting in graduate school. It is unclear what historically underrepresented graduate students’ experiences are during uncertain times, such as a pandemic. Method: Focus groups were conducted online using a videoconferencing platform during the COVID-19 pandemic. Five focus groups included: historically underrepresented doctoral students (n =5), historically underrepresented master’s students (n = 6), academic faculty (n = 7), administrator, administrative faculty, and academic faculty (n = 6), and families of historically underrepresented doctoral students (n = 6). Data were analyzed using thematic analysis. Results: Historically underrepresented graduate students experienced difficulties in accessing resources, adjustments to home and family life, amplification of existing nonfinancial issues, and expressed both fears of and hopes for the future. Conclusion: The COVID-19 pandemic exacerbated existing inequalities in access to resources as well as nonfinancial family support. Implications: This study may help normalize historically underrepresented graduate students’ experiences during the COVID-19 pandemic. The findings include ideas for informing families about graduate school that can enlighten family support efforts for historically underrepresented graduate students and their families.more » « less
-
null (Ed.)Abstract Tourette syndrome (TS) is a neuropsychiatric disorder of complex genetic architecture involving multiple interacting genes. Here, we sought to elucidate the pathways that underlie the neurobiology of the disorder through genome-wide analysis. We analyzed genome-wide genotypic data of 3581 individuals with TS and 7682 ancestry-matched controls and investigated associations of TS with sets of genes that are expressed in particular cell types and operate in specific neuronal and glial functions. We employed a self-contained, set-based association method (SBA) as well as a competitive gene set method (MAGMA) using individual-level genotype data to perform a comprehensive investigation of the biological background of TS. Our SBA analysis identified three significant gene sets after Bonferroni correction, implicating ligand-gated ion channel signaling, lymphocytic, and cell adhesion and transsynaptic signaling processes. MAGMA analysis further supported the involvement of the cell adhesion and trans-synaptic signaling gene set. The lymphocytic gene set was driven by variants in FLT3 , raising an intriguing hypothesis for the involvement of a neuroinflammatory element in TS pathogenesis. The indications of involvement of ligand-gated ion channel signaling reinforce the role of GABA in TS, while the association of cell adhesion and trans-synaptic signaling gene set provides additional support for the role of adhesion molecules in neuropsychiatric disorders. This study reinforces previous findings but also provides new insights into the neurobiology of TS.more » « less
-
Abstract Tourette Syndrome (TS) is a complex neurodevelopmental disorder characterized by vocal and motor tics lasting more than a year. It is highly polygenic in nature with both rare and common previously associated variants. Epidemiological studies have shown TS to be correlated with other phenotypes, but large-scale phenome wide analyses in biobank level data have not been performed to date. In this study, we used the summary statistics from the latest meta-analysis of TS to calculate the polygenic risk score (PRS) of individuals in the UK Biobank data and applied a Phenome Wide Association Study (PheWAS) approach to determine the association of disease risk with a wide range of phenotypes. A total of 57 traits were found to be significantly associated with TS polygenic risk, including multiple psychosocial factors and mental health conditions such as anxiety disorder and depression. Additional associations were observed with complex non-psychiatric disorders such as Type 2 diabetes, heart palpitations, and respiratory conditions. Cross-disorder comparisons of phenotypic associations with genetic risk for other childhood-onset disorders (e.g.: attention deficit hyperactivity disorder [ADHD], autism spectrum disorder [ASD], and obsessive-compulsive disorder [OCD]) indicated an overlap in associations between TS and these disorders. ADHD and ASD had a similar direction of effect with TS while OCD had an opposite direction of effect for all traits except mental health factors. Sex-specific PheWAS analysis identified differences in the associations with TS genetic risk between males and females. Type 2 diabetes and heart palpitations were significantly associated with TS risk in males but not in females, whereas diseases of the respiratory system were associated with TS risk in females but not in males. This analysis provides further evidence of shared genetic and phenotypic architecture of different complex disorders.more » « less
An official website of the United States government

Full Text Available